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Canberra, ACT 2600, Australia 
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Abstract. This note is based on the observation that the geometric optical behaviour of 
an object S described by the Schwarzschild interior solution is formally exactly that of 
the Maxwell fish-eye, truncated at some finite radius. Since the explicit point characteristic 
of the fish-eye and the character and disposition of rays within it may be obtained without 
having to solve any ray equations, the imagery of S is fully known. Of particular interest 
are the conditions under which a point source I in S has a real image I' in S, granted that 
one considers such an image to exist if at least some rays from I mutually intersect in 1'. 

1. Introduction 

The Schwarzschild interior solution gi, that is, the metric of a region of space-time 
filled with a static, spherically symmetric distribution of fluid S of constant density p ,  
has been derived and discussed a great many times despite the unphysical nature of 
S-because of the constancy of p it is acausal. Presumably the attention bestowed 
upon S is a result of the ease with which the explicit form of gi may be found, whilst 
its unphysical character becomes less significant when it is regarded as a limiting case 
of the class of regular spheres whose density does not increase outwards (Buchdahl 
1959). At any rate, granted the heuristic prominence of S, it seems to be appropriate 
to investigate any of its properties which appear not to have been described before, 
in particular its optical properties. The question is, how does l ight-or  physically 
perhaps a little less unrealistically, how do neutrinos-propagate within S on the level 
of geometrical optics? To answer it, one might integrate the equations for the null 
geodesics; but it is far simpler here to determine the point characteristic V. To this 
end it is of advantage to make use of the conformal flatness of gi. If isotropic coordinates 
are chosen, one is at once led to the conclusion that the optics of S is formally exactly 
that of the Maxwell fish-eye, truncated at some finite radius. The optical point 
characteristic of S is therefore known. 

2. The refractive index 

When isotropic coordinates are chosen, the generic form of the metric is 

d s 2 =  -q2(r)(dr2+r2d02+r2sin2 e d#J2)+f2( r )d t2  
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and the conformal flatness of this metric, i.e. the vanishing of the Weyl tensor, is 
assured if and only if 

f = (A + Br *)q, (2 .2)  

where A and B are constants. This shows immediately that (when the coordinates 
are isotropic) the generic optical behaviour of S is formally that of a classical dielectric 
medium whose refractive index is (Buchdahl 1970) 

N = q/f = (A + Br2)-' 

M* := (47rp/3)R3, (2 .4)  

(2 .3)  

which is just that of the Maxwell fish-eye. 
Let 

where R is the (isotropic coordinate) radius of S. M* is not the (active) mass M of 
S. In fact, if 

x := M / 2 R ,  x* = M * / 2 R ,  (2 .5)  
then (Kramer and Neugebauer 1971) x is a real root of the sextic equation 

x = x * u  + X I 6  (2.6) 
and 

(2 .7)  

A standard form of the refractive index function of the fish-eye is (Born and Wolf 

N = N o / ( l + r 2 / a 2 ) ,  (2 .8)  

a 2 = ( 1 - 2 x ) R 2 / ( 2 - x ) .  (2 .9)  
Also N o  = (1 + ~ ) ~ / ( l - 2 ~ ) ,  which is acceptable since the finiteness of the central 
pressure p c  requires that 

1959) 

where N o  and a are constants. Comparison with (2 .3)  shows that here one has 

x <;. (2.10) 

(Apart from this the actual value of No is immaterial.) It may be noted that, since 
p c / p  = x / ( 1 - 2 ~ ) ,  the limitation 3p/p S P ,  where p is an assigned positive constant, 
implies the restriction 

x s P / ( 3 + 2 P ) .  (2.11) 

X p = 1 < $ ,  X p = C S f .  (2.12) 

Usually one takes p = 1 or, more rarely, P = 3 .  For these (2.11) gives 

3. Existence of pairs of conjugate points 

In a (complete) Maxwell fish-eye every ray is a circle. All rays which originate from 
a point P[r  = r l ] ,  r l  < a ,  pass through a point P'[r = r ; ] ,  where r l r \  = U * .  In S, however, 
the effects of truncation must be taken into account. 
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To begin with, a given point P[rJ -of course r l  <R-will have a real image P’[r;] 
only if r; < R  also; and it is taken for granted that not all rays from P need pass 
through P’. The two conditions r l  < R,  r ;  < R together require that r;rl( = a’) < R 2 .  
In view of (2.9), P will thus have a real image only if x 2  -4x + 1 < 0 ,  or 

- 
x > x o  := 2 - J 3  0.268. (3.1) 

In other words, when ,y <,yo no point P in S has a conjugate image point P’ in S, that 
is, no pair of rays through P mutually intersect anywhere else in S .  (3.1) is in conflict 
with the first of the inequalities (2.12), though not with the second. 

By suitably choosing the unit of length one can arrange a to have the value unity; 
and this will henceforth be taken to have been done. 

4. The disposition of rays 

The explicit form of the optical point characteristic V of S can be obtained in ways 
which circumvent the cumbersome integration of the equations it satisfies. In fact 
(Buchdahl 1972,1975), 

v = sin-‘ 7, (4.1) 

2= (6-27) +5)/(1-+6)(1+5), (4.2) 

(4.3) 
Here Q[x, y, 21 and Q[x’, y’, 2’1 are two points on an arbitrary ray C, granted that 
the coordinates are now so chosen that in (2.1) the factor multiplying - y 2  becomes 
dx2+dy2+dz2 .  If e = ( a , p ,  y ) ,  e ’ = ( a ’ , p ’ ,  y ’ )  are the usual tangents to C at Q and 
Q’, respectively, one has in particular 

where 

in terms of the rotational invariants 

5 := X I 2  + yt2  + zI2, 7) :=x’x + y ’ y  +,?If, r : = x  2 2 2  + y  + z .  

Ne = -grad V = (4.4) 

Now, without loss of generality one may take C to lie in the xy plane: z = z t  = y = 
y ’  = 0. Take Q to be the fixed initial point P[ - r, 0 ,  01. Then P/a  =: tan w is the initial 
slope of the ray through P and Q‘, i.e. w is the angle the ray makes with the x axis 
at P. CY a d &  as functions of x’  and y’, are read off from (4.4) and so one obtains 
immediately the equation of C: 

[ ~ ‘ - ( 1 - r ~ ) / 2 r ] ~ + [ y ’ + ( l + r ~ ) / 2 r  tanu]’ =[(1+r2)/2r sinul’. (4.5) 

9 := (1 +r2)/2r Isin w 1, (4.6) 

Thus C is a ‘circle’ of radius 

with centre at [(l - r2)/2r, - (1+ r2)/2r tan U]=: (U, U ) ,  say. Equation (4.5) is, of course, 
satisfied when x‘ = l / r ,  y ‘  = 0, independently of the value of W .  

To find the points of intersection of a ray with the boundary of S ,  set x ‘  = Rcos +, 
y ‘  = R sin (I, in (4.5). The equation for sin + is then 

(4.7) (U’ + U’) sin2 4 - 2vK sin + + ( K 2  - U’) = 0, 
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where K := ( 1  - R  2 ) /2R .  Real roots exist only if U + v 2 K 2 ,  or 

Jsin w I G R ( 1  + r 2 ) / r ( l  + R ~ )  =: u, (4.8) 

say. It evidently suffices to take 1: I G 7r/2, since the angles w and T - w  belong to 
one and the same circular arc. If a’ is restored explicitly in (4.8) and then eliminated 
by means of (2.9), one has 

Here the condition x >,yo should re-emerge from the condition that some rays through 
P be complete ‘circles’ or, in other words, that the condition lsin w 1 >U can be satisfied. 
This will be the case provided that (T < 1 .  This inequality can be violated when the 
value of r is sufficiently close to a unless x <,yo, as expected. 
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